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1. INTRODUCTION

In 1951 Diliberto and Straus published a paper [3] in which they
developed an algorithm for generating the closest point in M = C(X) + C(Y)
to any IE C(X X Y), where X = Y = [0, I]. In fact, they were only able to
show that the iterates In in their algorithm had the properties

(i) Il/nlioo --+ dist(f, M);

(ii) {In} contains cluster points.

Later Aumann [1] showed that the iterates do in fact converge to a function
1- m, where m E M and m is a closest point to I from M.

In this paper we consider the same problem in the space L I (X X Y) with
M = L,(X) +L,(Y). Several results are already known about this
setting-see [2] for details. In particular, if the natural generalisation of the
algorithm to L I (X X Y) is used, then there exist functions IE L I (X X Y) for
which IIln II I + dist(f, M). We shall investigate the conditions under which the
convergence of II/n III to dist(f, M) holds.

2. THE ALGORITHM

Let (X, E, p) and (Y, (J, v) be two measure spaces of finite measure. We
assume that X and Yare compact Hausdorff spaces and that p and v are
regular Borel measures. It is convenient, and involves no sacrifice of
generality, to suppose p(X) = v(Y) = 1. Let (Z, rp, 0') = (X, E, p) X (Y, 8, v).
By identifying an element gEL I (X) with the (equivalence class of the)
function g(x,y)=g(x), we embed L,(X) in L,(Z). In the same way L,(Y) is
embedded isometrically in L,(Z), and we henceforth do not distinguish
between g and g.

In the space L,(X) we define an operator A which produces best approx­
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imation by constants. Since such approximations are not unique, we let leg)
denote the interval of all best constant approximations to g, i.e.,

r E leg) iff Ilg- rill ~ Ilg- ell) for all e E IR.

Then Ag is defined as the midpoint of leg). If fE LI(X X Y), then by the
Fubini theorem, f(x, y) E L J(X) for almost all y E Y. We define A xl to be
the function of y which results upon applying A to f(·, y). We define A y

similarly. It is not immediately clear where the ranges of A x and A y lie, but a
result from [2] shows that Ax:L)(XX Y)--+Ll(Y) and Ay:Ll(XX Y)--+
LI(X). It is then easy to see that, for example, Ax satisfies Ilf- Axflll ::;;;
Ilf - hili for all hE LI(Y).

The generalisation of the Diliberto-Straus algorithm is now: given
fE LI(X X Y) we setfl =J,

f2 =fl -Ayfl'

f3 =f2 -Axf2'

f2n =f2n-1 - A yf2n-I'

f2n+1 =f2n -Axf2n'

It is sometimes convenient to rephrase the algorithm by setting

n

Gn= L Ayf2P_1'
p=1

and H o = 0, when

n

H n = L A x f2p,
p=1

n = 1,2,...

f2n =f- Gn - Hn_l ,

f2n+l=f-Gn-Hn, n = 1,2,....

It is now easy to see that since Ayf2n=0, we have Ay(f-Gn-Hn_1)=0
or Ay(f- Hn- I) - Gn= 0, since Gn lies in the range of A y. This gives
Gn= Ay(f- H n_ I ). By a similar argument we obtain H n= A x(f - Gn)'

The above reasoning has already used one of two useful results which
were established in [2]. The first is the elementary observation that, for
example, A x(f+ h) = A xf + h for all h ELI (Y). Secondly, if fl' f2 lie in
C(XX Y) and fl ::;;;f2' then Axfl ~Axf2' These are consequences of
corresponding results about the operator A. We have A(g + e) = Ag + e,
where g E C(X), and e is any constant function in C(X), and for
gl,g2 E C(X) with gl ::;;;g2' Agi ~Ag2'
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3. THE EXISTENCE OF CLUSTER POINTS

We shall for the moment content ourselves with cluster points. We need

3

LEMMA 3.1. IffE C(x X Y), then

(i) I(Axf)(Yi) - (A xf)(Y2)1 ~ sUPxeX I f(x, Yl) - f(x, Yz)1 for all

Yl'Y2 E Y;

(ii) I(Ayf)(x i ) - (A yf)(x 2)1 ~ SUPyeY If(x[, y) - f(x 2, Y)I for all
X 1 ,x2 EX.

Proof These results have already appeared in [2). For completeness we
provide the proof of (i) here. We begin by observing that

minf(x,y) ~ (Axf)(y) ~ maxf(x,y).
xeX xeX

The upper and lower bounds here are finite by the compactness of X X Y and
so Axfis certainly in Loo(XX Y). Now we observe that sincefE C(XX Y)

for all Yl' Y2 E Y. We may rewrite the above inequality as

- sup If(x, Y i) - f(x, Yz)1 +f(x, Y2) ~f(x, Y I)
xeX

Now using the properties of A and Ax mentioned at the end of Section 2, we
obtain

or

THEOREM 3.2. If fE C(X X Y), then its associated sequence of iterates
{fn} generated by the Li-version of the Diliberto-Straus algorithm lies in
C(X X Y) and has cluster points in the C(X X Y)-topology.
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Proof. Using Lemma 3.1 we have

IHn(Yl) - Hn(Y2)1 = IAAf - Gn)(Yl) -Ax(f- Gn)(Y2)!

~ sup l(f- Gn)(X,y.) - (f - Gn)(x'Y2)1
xeX

A similar result holds for each Gn and it follows that {fn} is an equi­
continuous sequence of functions. This sequence has cluster points by the
Ascoli theorem.

4. CONVERGENCE OF NORMS

We now prove a result about the convergence of the norms of the elements
in the L eversion of the Diliberto-Straus algorithm to the distance from the
function f to the subspace M. This is achieved by showing that the cluster
points of· the algorithm are themselves best approximations. Such a result
will actually prove that to each continuous function there is a best approx­
imation in M (a cluster point of its Diliberto-Straus sequence) which is
again continuous. This is not really a new result, however, since it can easily
be extracted from a result in [2].

We need the following elementary Lemma before we can proceed to our
main result:

LEMMA 4.1. Suppose (H,P) is a finite measure space, with {Fn} a
sequence of measurable sets in :1 such that IF Ifl-+ 0 for some function
fE L1(H) satisfying P(N(f» = O. Then tJ(Fn) -+ O. Here N(f) =
{h E H:f(h) = O}.

Proof. Suppose the desired conclusion is false. Then, by passing to a
subsequence if necessary, P(Fn ) >0, where 0> O. Again by passing to a
second subsequence if need be, we can ensure that IF If I~ 1/2n

• Now let C
be the set of all x E H such that x belongs to infinitely many of the Fn , i.e.,

00 00

C= n U Fn •
m=l n=m

Now P(U;:'=m Fn)~ 0 and so P(C) ~ fJ. Also
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Thus we conclude that felf I=0 and hence that f =0 a.e. on C. This
contradicts P(N(f» = O. I

THEOREM 4.1. Let f E C(X X Y) and let the set of points at which f
agrees with any member of M have measure zero. Then the iterates {In} in
the L I-version of the Diliberto-Straus algorithm satisfy II fn II I -+ dist(J, M).

Proof We begin by showing that if Fn= {(x, y): sgnfn+ I(x,y) =
-sgnfn(x,y)}, then a(Fn)-+O. To see this, we first recall that Wfnlll} forms
a decreasing sequence bounded below and hence is convergent. Given e >0,
take N sufficiently large so that II f2n _III. - II f2n III <e for all n ~ N. Then
f2n =f2n-1 - A y f2n-I'

Next we observe that if the set of points at which f agrees with any
member of M has measure zero, the sequence {fn} inherits this property.
Using this and the characterisation theorem for best approximation by
constants (see [4]) we obtain

t sgnf2n(x, y) dv = 0

Now hn-I - f2n E LI(X) so that

for almost all x E X.

If (f2n -I - f2n) sgnf2n = °
XXY

and consequently

II f2n-1 sgnf2n = II If2nl = IIf2nlil ~ Ilf2n-t III - e for n ~N.

Thus

II f2n-1 sgnf2n ~ II f2n-1 sgnf2n_1 - e or II (sgnf2n_1 - sgnf2n)f2n-l ~ e.

Again by our assumption that fn agrees with any member of M only on
sets of measure zero, we have sgnf2n_1 = sgnf2n for almost all
(x,y)EXX Y\F2n - 1 and so

i (sgn!2n_1 -sgnf2n)f2n-l ~e
F 2n - 1

or

2 ff. If2n-11 ~ e.
f 2n - J

A similar argument is valid for F2n and hence we may conclude IfF Ifnl-+ 0.
n
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Now by Theorem 3.2, {In} contains a uniformly convergent subsequence
{In } with limit e, say. Again e can only agree with elements of M on sets of

k

measure zero and SSFie 1-+ O. Thus Lemma 4.1 may be applied to give
nk

o(Fn ) -+ O.
k

Now since Ink -+ e in the C(Z)-topology it is obvious that
Sf sgn!nk e do -+ II eil l • Furthermore, we assert that SS sgn!nk m do -+ 0 for
all m E M. Given that this assertion is true, then our theorem will follow
from the inequalities (true for any m E M)

lie +mil] ~ If (e +m) sgn!n do

and so

II e+mill ~ lim if sgn!n (e +m) do
nk- oo k

It remains to prove our assertion that Sf sgn!nk . m do -+ 0 for all m E M. It
will be sufficient to show that

ff sgn!nk . u do -+ 0

ff sgn!nk . v do -+ 0

for all U E L]{X),

By the Fubini theorem, these assertions are equivalent to

for almost all x E X,

for almost all y E Y.

Tnere are now two cases depending on whether nk is even or odd. We
suppose that nk = 2p, the case nk = 2p - 1 being similar. Then
Sy sgn!zp(x, y) dv = 0 for almost all x E X, and by the Fubini theorem, if we
set Sx sgn!zp(x,y) d,u = rzp(y) and Fzp_l(y) = {x: (x,y) E Fzp-d, then we
obtain

f) rzp(y)! dv = t It sgn!zp(x,y) dp Idv

= f If sgn!ZP_I(X'y) dp + 2J sgn!zp(x,y) d,u Idv
y x F 2p _ l (yl
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= 2f If sgnf2p(X, y) dJ.l1 dv
y F1p-1(Y)

~ 2f f \sgnf2P(x,y)! dJ.l dv
y F1p_1(Y)

= 2a(F2p _ 1)·

7

Now setting rnk(y)=fxsgnfnJx,y)dJ.l and snk(x)=fysgnfnk(x,y)dv, we
have

Of course, for each nk one of these inequalities is trivial. We can now
conclude

as k -t 00

and

as k-t 00.

Again recalling the convergence fnk -t e, we have

fy It sgn e(x,y) dJ.l1 dv = 0, Ix It sgn e(x, y) dv I dJ.l = 0,

and this is sufficient to allow us to conclude

f sgnfnJx, y) dv -t 0
y

for almost all y E Y

for almost all x E X.

5. REMARKS

It is interesting to note that our approach follows that of Diliberto and
Straus insofar as we exploit the same formula dist(f, M) =
sUPrES(L *)nM.L 1/*(/)1· However, Diliberto and Straus needed to develop
first a s~bset of M.L which had rather simple properties. They then showed
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that it was sufficient to take the sup over this "nice" subset. Here we have
used the formula dist(f, M) = limn_ oo sup 1/:(1)1, where/: E S(Lf) andl:
converges weakly to a member of MJ..

The condition that the function differs from all members of M on every set
of positive measure cannot in general be omitted. In [2] an example of a
function I not satisfying this condition and for which IIIIII >dist(f,M) was
constructed. The function had the further property that A x I = A y 1= 0 so
that the algorithm is stationary. In this case Il/nlll -A dist(f, M).

This paper leaves open the problem of convergence of the algorithm. As in
the C(X X y) case, this seems to be a more difficult question than
convergence of the norms.
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