The Diliberto–Straus Algorithm in $L_1(X \times Y)$

WILLIAM A. LIGHT

Mathematics Department, Cartmel College, University of Lancaster, Lancaster, England

Communicated by Carl de Boor

Received January 14, 1981; revised May 5, 1982

1. INTRODUCTION

In 1951 Diliberto and Straus published a paper [3] in which they developed an algorithm for generating the closest point in M = C(X) + C(Y) to any $f \in C(X \times Y)$, where X = Y = [0, 1]. In fact, they were only able to show that the iterates f_n in their algorithm had the properties

- (i) $||f_n||_{\infty} \rightarrow \operatorname{dist}(f, M);$
- (ii) $\{f_n\}$ contains cluster points.

Later Aumann [1] showed that the iterates do in fact converge to a function f-m, where $m \in M$ and m is a closest point to f from M.

In this paper we consider the same problem in the space $L_1(X \times Y)$ with $M = L_1(X) + L_1(Y)$. Several results are already known about this setting—see [2] for details. In particular, if the natural generalisation of the algorithm to $L_1(X \times Y)$ is used, then there exist functions $f \in L_1(X \times Y)$ for which $||f_n||_1 \neq \text{dist}(f, M)$. We shall investigate the conditions under which the convergence of $||f_n||_1$ to dist(f, M) holds.

2. The Algorithm

Let (X, Σ, μ) and (Y, θ, ν) be two measure spaces of finite measure. We assume that X and Y are compact Hausdorff spaces and that μ and ν are regular Borel measures. It is convenient, and involves no sacrifice of generality, to suppose $\mu(X) = \nu(Y) = 1$. Let $(Z, \Phi, \sigma) = (X, \Sigma, \mu) \times (Y, \Theta, \nu)$. By identifying an element $g \in L_1(X)$ with the (equivalence class of the) function $\overline{g}(x, y) = g(x)$, we embed $L_1(X)$ in $L_1(Z)$. In the same way $L_1(Y)$ is embedded isometrically in $L_1(Z)$, and we henceforth do not distinguish between g and \overline{g} .

In the space $L_1(X)$ we define an operator A which produces best approx-

WILLIAM A. LIGHT

imation by constants. Since such approximations are not unique, we let I(g) denote the interval of all best constant approximations to g, i.e.,

$$r \in I(g)$$
 iff $||g-r||_1 \leq ||g-c||_1$ for all $c \in \mathbb{R}$.

Then Ag is defined as the midpoint of I(g). If $f \in L_1(X \times Y)$, then by the Fubini theorem, $f(x, y) \in L_1(X)$ for almost all $y \in Y$. We define $A_x f$ to be the function of y which results upon applying A to $f(\cdot, y)$. We define A_y similarly. It is not immediately clear where the ranges of A_x and A_y lie, but a result from [2] shows that $A_x: L_1(X \times Y) \to L_1(Y)$ and $A_y: L_1(X \times Y) \to L_1(X)$. It is then easy to see that, for example, A_x satisfies $||f - A_x f||_1 \leq ||f - h||_1$ for all $h \in L_1(Y)$.

The generalisation of the Diliberto-Straus algorithm is now: given $f \in L_1(X \times Y)$ we set $f_1 = f$,

$$f_{2} = f_{1} - A_{y}f_{1},$$

$$f_{3} = f_{2} - A_{x}f_{2},$$

$$\vdots = \vdots \qquad \vdots$$

$$f_{2n} = f_{2n-1} - A_{y}f_{2n-1}$$

$$f_{2n+1} = f_{2n} - A_{x}f_{2n}.$$

It is sometimes convenient to rephrase the algorithm by setting

$$G_n = \sum_{p=1}^n A_y f_{2p-1}, \qquad H_n = \sum_{p=1}^n A_x f_{2p}, \qquad n = 1, 2, \dots$$

and $H_0 = 0$, when

$$f_{2n} = f - G_n - H_{n-1},$$

$$f_{2n+1} = f - G_n - H_n, \qquad n = 1, 2, \dots.$$

It is now easy to see that since $A_y f_{2n} = 0$, we have $A_y (f - G_n - H_{n-1}) = 0$ or $A_y (f - H_{n-1}) - G_n = 0$, since G_n lies in the range of A_y . This gives $G_n = A_y (f - H_{n-1})$. By a similar argument we obtain $H_n = A_x (f - G_n)$.

The above reasoning has already used one of two useful results which were established in [2]. The first is the elementary observation that, for example, $A_x(f+h) = A_x f + h$ for all $h \in L_1(Y)$. Secondly, if f_1 , f_2 lie in $C(X \times Y)$ and $f_1 \leqslant f_2$, then $A_x f_1 \leqslant A_x f_2$. These are consequences of corresponding results about the operator A. We have A(g+c) = Ag + c, where $g \in C(X)$, and c is any constant function in C(X), and for $g_1, g_2 \in C(X)$ with $g_1 \leqslant g_2$, $Ag_1 \leqslant Ag_2$.

3. THE EXISTENCE OF CLUSTER POINTS

We shall for the moment content ourselves with cluster points. We need

LEMMA 3.1. If $f \in C(X \times Y)$, then

(i) $|(A_x f)(y_1) - (A_x f)(y_2)| \le \sup_{x \in X} |f(x, y_1) - f(x, y_2)|$ for all $y_1, y_2 \in Y$;

(ii) $|(A_y f)(x_1) - (A_y f)(x_2)| \leq \sup_{y \in Y} |f(x_1, y) - f(x_2, y)|$ for all $x_1, x_2 \in X$.

Proof. These results have already appeared in [2]. For completeness we provide the proof of (i) here. We begin by observing that

$$\min_{x \in \mathcal{X}} f(x, y) \leq (A_x f)(y) \leq \max_{x \in \mathcal{X}} f(x, y).$$

The upper and lower bounds here are finite by the compactness of $X \times Y$ and so $A_x f$ is certainly in $L_{\infty}(X \times Y)$. Now we observe that since $f \in C(X \times Y)$

$$-\sup_{x \in X} |f(x, y_1) - f(x, y_2)| \leq f(x, y_1) - f(x, y_2)$$
$$\leq \sup_{x \in Y} |f(x, y_1) - f(x, y_2)|$$

for all $y_1, y_2 \in Y$. We may rewrite the above inequality as

$$-\sup_{x \in X} |f(x, y_1) - f(x, y_2)| + f(x, y_2) \leq f(x, y_1)$$
$$\leq \sup_{x \in X} |f(x, y_1) - f(x, y_2)| + f(x, y_2)$$

Now using the properties of A and A_x mentioned at the end of Section 2, we obtain

$$-\sup_{x \in X} |f(x, y_1) - f(x, y_2)| + (A_x f)(y_2)$$

$$\leq (A_x f)(y_1) \leq \sup_{x \in X} |f(x, y_1) - f(x, y_2)| + (A_x f)(y_2),$$

or

$$|(A_x f)(y_1) - (A_x f)(y_2)| \le \sup_{x \in X} |f(x, y_1) - f(x, y_2)|.$$

THEOREM 3.2. If $f \in C(X \times Y)$, then its associated sequence of iterates $\{f_n\}$ generated by the L_1 -version of the Diliberto-Straus algorithm lies in $C(X \times Y)$ and has cluster points in the $C(X \times Y)$ -topology.

Proof. Using Lemma 3.1 we have

$$|H_n(y_1) - H_n(y_2)| = |A_x(f - G_n)(y_1) - A_x(f - G_n)(y_2)|$$

$$\leq \sup_{x \in X} |(f - G_n)(x, y_1) - (f - G_n)(x, y_2)|$$

$$= \sup_{x \in X} |f(x, y_1) - f(x, y_2)|.$$

A similar result holds for each G_n and it follows that $\{f_n\}$ is an equicontinuous sequence of functions. This sequence has cluster points by the Ascoli theorem.

4. CONVERGENCE OF NORMS

We now prove a result about the convergence of the norms of the elements in the L_1 -version of the Diliberto-Straus algorithm to the distance from the function f to the subspace M. This is achieved by showing that the cluster points of the algorithm are themselves best approximations. Such a result will actually prove that to each continuous function there is a best approximation in M (a cluster point of its Diliberto-Straus sequence) which is again continuous. This is not really a new result, however, since it can easily be extracted from a result in [2].

We need the following elementary Lemma before we can proceed to our main result:

LEMMA 4.1. Suppose (H,β) is a finite measure space, with $\{F_n\}$ a sequence of measurable sets in H such that $\int_{F_n} |f| \to 0$ for some function $f \in L_1(H)$ satisfying $\beta(N(f)) = 0$. Then $\beta(F_n) \to 0$. Here $N(f) = \{h \in H: f(h) = 0\}$.

Proof. Suppose the desired conclusion is false. Then, by passing to a subsequence if necessary, $\beta(F_n) > \delta$, where $\delta > 0$. Again by passing to a second subsequence if need be, we can ensure that $\int_{F_n} |f| \leq 1/2^n$. Now let C be the set of all $x \in H$ such that x belongs to infinitely many of the F_n , i.e.,

$$C=\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}F_n.$$

Now $\beta(\bigcup_{n=m}^{\infty} F_n) \ge \delta$ and so $\beta(C) \ge \delta$. Also

$$\int_C |f| \leq \int_{\bigcup_{n=m}^{\infty} F_n} |f| \leq \sum_{n=m}^{\infty} \frac{1}{2^n} = \frac{1}{2^{m-1}}.$$

Thus we conclude that $\int_C |f| = 0$ and hence that f = 0 a.e. on C. This contradicts $\beta(N(f)) = 0$.

THEOREM 4.1. Let $f \in C(X \times Y)$ and let the set of points at which f agrees with any member of M have measure zero. Then the iterates $\{f_n\}$ in the L_1 -version of the Diliberto-Straus algorithm satisfy $||f_n||_1 \rightarrow \text{dist}(f, M)$.

Proof. We begin by showing that if $F_n = \{(x, y): \operatorname{sgn} f_{n+1}(x, y) = -\operatorname{sgn} f_n(x, y)\}$, then $\sigma(F_n) \to 0$. To see this, we first recall that $\{\|f_n\|_1\}$ forms a decreasing sequence bounded below and hence is convergent. Given $\varepsilon > 0$, take N sufficiently large so that $\|f_{2n-1}\|_1 - \|f_{2n}\|_1 < \varepsilon$ for all $n \ge N$. Then $f_{2n} = f_{2n-1} - A_y f_{2n-1}$.

Next we observe that if the set of points at which f agrees with any member of M has measure zero, the sequence $\{f_n\}$ inherits this property. Using this and the characterisation theorem for best approximation by constants (see [4]) we obtain

$$\int_{Y} \operatorname{sgn} f_{2n}(x, y) \, dv = 0 \qquad \text{for almost all } x \in X.$$

Now $f_{2n-1} - f_{2n} \in L_1(X)$ so that

$$\iint_{X \times Y} (f_{2n-1} - f_{2n}) \operatorname{sgn} f_{2n} = 0$$

and consequently

$$\iint f_{2n-1} \operatorname{sgn} f_{2n} = \iint |f_{2n}| = ||f_{2n}||_1 \ge ||f_{2n-1}||_1 - \varepsilon \quad \text{for} \quad n \ge N.$$

Thus

$$\iint f_{2n-1} \operatorname{sgn} f_{2n} \ge \iint f_{2n-1} \operatorname{sgn} f_{2n-1} - \varepsilon \quad \text{or} \quad \iint (\operatorname{sgn} f_{2n-1} - \operatorname{sgn} f_{2n}) f_{2n-1} \le \varepsilon.$$

Again by our assumption that f_n agrees with any member of M only on sets of measure zero, we have $\operatorname{sgn} f_{2n-1} = \operatorname{sgn} f_{2n}$ for almost all $(x, y) \in X \times Y \setminus F_{2n-1}$ and so

$$\int_{F_{2n-1}} (\operatorname{sgn} f_{2n-1} - \operatorname{sgn} f_{2n}) f_{2n-1} \leqslant \varepsilon$$

or

$$2\iint_{F_{2n-1}}|f_{2n-1}|\leqslant\varepsilon.$$

A similar argument is valid for F_{2n} and hence we may conclude $\iint_{F_n} |f_n| \to 0$.

WILLIAM A. LIGHT

Now by Theorem 3.2, $\{f_n\}$ contains a uniformly convergent subsequence $\{f_{n_k}\}$ with limit *e*, say. Again *e* can only agree with elements of *M* on sets of measure zero and $\iint_{F_{n_k}} |e| \to 0$. Thus Lemma 4.1 may be applied to give $\sigma(F_{n_k}) \to 0$.

Now since $f_{n_k} \to e$ in the C(Z)-topology it is obvious that $\iint \operatorname{sgn} f_{n_k} \cdot e \, d\sigma \to \|e\|_1$. Furthermore, we assert that $\iint \operatorname{sgn} f_{n_k} \cdot m \, d\sigma \to 0$ for all $m \in M$. Given that this assertion is true, then our theorem will follow from the inequalities (true for any $m \in M$)

$$\|e+m\|_1 \ge \iint (e+m) \operatorname{sgn} f_n \, d\sigma$$

and so

$$\|e+m\|_1 \ge \lim_{n_k \to \infty} \iint \operatorname{sgn} f_{n_k}(e+m) \, d\sigma$$
$$= \|e\|_1.$$

It remains to prove our assertion that $\iint \operatorname{sgn} f_{n_k} \cdot m \, d\sigma \to 0$ for all $m \in M$. It will be sufficient to show that

$$\iint \operatorname{sgn} f_{n_k} \cdot u \, d\sigma \to 0 \qquad \text{for all } u \in L_1(X),$$
$$\iint \operatorname{sgn} f_{n_k} \cdot v \, d\sigma \to 0 \qquad \text{for all } v \in L_1(Y).$$

By the Fubini theorem, these assertions are equivalent to

$$\int_{Y} \operatorname{sgn} f_{n_{k}} dv \to 0 \quad \text{for almost all } x \in X,$$
$$\int_{X} \operatorname{sgn} f_{n_{k}} d\mu \to 0 \quad \text{for almost all } y \in Y.$$

There are now two cases depending on whether n_k is even or odd. We suppose that $n_k = 2p$, the case $n_k = 2p - 1$ being similar. Then $\int_Y \operatorname{sgn} f_{2p}(x, y) dv = 0$ for almost all $x \in X$, and by the Fubini theorem, if we set $\int_X \operatorname{sgn} f_{2p}(x, y) d\mu = r_{2p}(y)$ and $F_{2p-1}(y) = \{x: (x, y) \in F_{2p-1}\}$, then we obtain

$$\int_{Y} |r_{2p}(y)| \, dv = \int_{Y} \left| \int_{X} \operatorname{sgn} f_{2p}(x, y) \, d\mu \right| \, dv$$
$$= \int_{Y} \left| \int_{X} \operatorname{sgn} f_{2p-1}(x, y) \, d\mu + 2 \int_{F_{2p-1}(y)} \operatorname{sgn} f_{2p}(x, y) \, d\mu \right| \, dv$$

$$= 2 \int_{Y} \left| \int_{F_{2p-1}(y)} \operatorname{sgn} f_{2p}(x, y) \, d\mu \right| \, dv$$

$$\leq 2 \int_{Y} \int_{F_{2p-1}(y)} |\operatorname{sgn} f_{2p}(x, y)| \, d\mu \, dv$$

$$= 2\sigma(F_{2p-1}).$$

Now setting $r_{n_k}(y) = \int_X \operatorname{sgn} f_{n_k}(x, y) d\mu$ and $s_{n_k}(x) = \int_Y \operatorname{sgn} f_{n_k}(x, y) dv$, we have

$$\int_{Y} |r_{n_{k}}(y)| dv \leq 2\sigma(F_{n_{k-1}}) \quad \text{and} \quad \int_{X} |s_{n_{k}}(x)| d\mu \leq 2\sigma(F_{n_{k-1}}).$$

Of course, for each n_k one of these inequalities is trivial. We can now conclude

$$\int_{Y} |r_{n_k}(y)| \, dv \to 0 \qquad \text{as} \quad k \to \infty$$

and

$$\int_X |s_{n_k}(x)| \, d\mu \to 0 \qquad \text{as} \quad k \to \infty.$$

Again recalling the convergence $f_{n_k} \rightarrow e$, we have

$$\int_{Y} \left| \int_{X} \operatorname{sgn} e(x, y) \, d\mu \right| \, dv = 0, \qquad \int_{X} \left| \int_{Y} \operatorname{sgn} e(x, y) \, dv \right| \, d\mu = 0,$$

and this is sufficient to allow us to conclude

$$\int_{X} \operatorname{sgn} f_{n_{k}}(x, y) \, d\mu \to 0 \qquad \text{for almost all } y \in Y$$
$$\int_{Y} \operatorname{sgn} f_{n_{k}}(x, y) \, dv \to 0 \qquad \text{for almost all } x \in X.$$

5. Remarks

It is interesting to note that our approach follows that of Diliberto and Straus insofar as we exploit the same formula $dist(f, M) = \sup_{f^* \in S(L_1^*) \cap M^{\perp}} |f^*(f)|$. However, Diliberto and Straus needed to develop first a subset of M^{\perp} which had rather simple properties. They then showed

WILLIAM A. LIGHT

that it was sufficient to take the sup over this "nice" subset. Here we have used the formula $dist(f, M) = \lim_{n \to \infty} \sup |f_n^*(f)|$, where $f_n^* \in S(L_1^*)$ and f_n^* converges weakly to a member of M^{\perp} .

The condition that the function differs from all members of M on every set of positive measure cannot in general be omitted. In [2] an example of a function f not satisfying this condition and for which $||f||_1 > \text{dist}(f, M)$ was constructed. The function had the further property that $A_x f = A_y f = 0$ so that the algorithm is stationary. In this case $||f_n||_1 \neq \text{dist}(f, M)$.

This paper leaves open the problem of convergence of the algorithm. As in the $C(X \times Y)$ case, this seems to be a more difficult question than convergence of the norms.

ACKNOWLEDGMENTS

The author wishes to acknowledge the many helpful remarks made by the referee.

References

- G. AUMANN, Uber approximative Nomographie II, Bayer Akad. Wiss. Math. Natur. Kl. Sitzungsber. (1959), 103-109.
- E. W. CHENEY, W. A. LIGHT, J. H. MCCABE, AND G. M. PHILLIPS, The approximation of bivariate functions by sums of univariate ones using the L₁-metric, *Proc. Edinburgh Math.* Soc. (5), to appear.
- 3. S. P. DILIBERTO AND E. G. STRAUS, On the approximation of a function of several variables by the sum of functions of fewer variables, *Pacific J. Math.* 1 (1951), 195-210.
- R. C. JAMES, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.